EXHIBIT A

DECLARATION OF BENJAMIN M. WOLFERT, MBA IN SUPPORT OF PLAINTIFFS IN CASE NO. 1:24-CV-00656

- I, Benjamin Wolfert, declare:
- 1. I am a Partner at Bates White Economic Consulting, LLC ("Bates White"), a professional services firm that specializes in providing economic, financial, and statistical analyses to law firms, companies, and government agencies. I received my MBA from the University of Maryland and a BS in both Economics (with honors) and Mathematics from the Pennsylvania State University. I have over eighteen years of experience providing data analytics and litigation-related consulting services and have been retained as a consultant by both private companies and government agencies in connection with matters related to a wide variety of issues and industries, including the pharmaceutical, airline, and credit card industries, among others. A copy of my curriculum vitae is attached as Appendix 1.
- 2. McDermott Will & Schulte, along with the Washington Lawyers' Committee for Civil Rights and Urban Affairs, the Children's Law Center, and The Arc of the United States ("Counsel") engaged Bates White on behalf of Plaintiffs¹ in this matter to provide data analysis concerning allegations that the District of Columbia, and more specifically the Office of the State Superintendent of Education ("OSSE" or "Defendant"), failed "to meet their basic obligation to ensure students with disabilities have safe, reliable, and appropriate transportation to and from school."² I have personal knowledge of the review set forth in this declaration and the sources noted herein and, if called as a witness, could and would testify competently to such review under oath.

Named plaintiffs in this matter include Crystal Robertson, on behalf of herself and her minor child D.R.: Elizabeth Daggett on behalf of herself and her minor child H.D.; Joann McCray on behalf of herself and her minor child J.C.; Veronica Guerrero on behalf of herself and her minor child A.F.; Marcia Cannon-Clark and David Clark on behalf of themselves and their minor child B.R.C; and The Arc of the United States. Robertson v. District of Columbia, No. 1:24-CV-00656 (D.D.C. March 7, 2024) ("Complaint").

Complaint, ¶ 1.

3. Bates White is providing consulting services in this matter on a pro bono basis. In addition to my own time, I directed other Bates White staff who performed supporting work and analyses in connection with the preparation of my opinions as set forth herein.

Scope of charge

4. I submitted a declaration on December 18, 2024 ("December 18 Declaration"), in this matter describing my review of OSSE's publicly-reported data on the on-time status of bus routes used to provide transportation services to eligible students.³ I have now been asked by Counsel to review the internal—that is, not publicly available—"Trip Ticket" bus transportation data produced by OSSE to date and conduct an assessment of these data. Specifically, I have been asked to evaluate (1) whether the Trip Tickets provide additional insight into OSSE's transportation services beyond what is publicly available and (2) the timeliness of OSSE-provided transportation services based on an assessment of the October 2024 Trip Tickets.

Summary of findings

5. Based on my review of "Trip Ticket" data produced by OSSE thus far, which appear to cover at least the beginning of the 2024–25 school year through November 2024, I have found the following. First, Trip Tickets contain substantially more detail than the publicly available data and therefore provide a more accurate recording of OSSE's transportation services. Trip Tickets provide insight into how OSSE designed the transportation system and how the system actually performed, among other things. Second, based on my analysis of Trip Tickets for OSSE-managed bus routes in October 2024, I found that (1) OSSE's *scheduled* daily school drop-off time was after the start of instruction for 24 distinct bus route-school combinations, (2) OSSE's publicly-reported data underestimate the number of times a bus left the terminal late, (3) 296 students were assigned to bus routes that arrived after the start of instruction at least once a week on average in the month of October 2024, and 192 students were assigned to bus routes that

Declaration of Benjamin M. Wolfert, MBA, In Support of Plaintiffs In Case No. 1:24-CV-00656, December 18, 2024 ("December 18 Wolfert Declaration").

arrived after the start of instruction at least twice a week on average, and (4) there is only a weak positive correlation between a bus leaving the terminal late and arriving after the start of instruction. My analysis is conservative in the sense that around 60% of Trip Ticket pages produced were redacted and therefore could not be analyzed; assuming unredacted information is representative (that is, statistically similar to) redacted information, the actual number of late drop-offs and impacted students would be at least double what my analysis found.

Page 4 of 20

Background

- 6. OSSE provides transportation services to students with disabilities who are eligible for special education transportation.⁴ These services fall under three eligibility categories: medically fragile students, those requiring structured transportation support, and those accessing specialized programs. Transportation as a related service is defined by federal regulation as "[t]ravel to and from school and between schools; [t]ravel in and around school buildings; and [s]pecialized equipment (such as special or adapted buses, lifts, and ramps), if required to provide special transportation for a child with a disability."⁵
- 7. As of May 15, 2024, OSSE was responsible for transporting more than 4,000 students with special needs directly from their homes to their designated schools and back.⁶ The schools were located within Washington, DC, as well as in surrounding areas, including Baltimore, Maryland, and Fairfax, Virginia.⁷ To try and meet this demand, OSSE operated a fleet of approximately 650 buses and vans and employed a team of more than 1,000 drivers and attendants.⁸ OSSE-operated buses originated from one of four bus terminals: Adams Place, Fifth

3

.

Office of the State Superintendent of Education, *Special Education Non-Regulatory Guidance Determining Eligibility for Transportation as a Related Service* (July 2024),

https://osse.dc.gov/sites/default/files/dc/sites/osse/service_content/attachments/Special%20Education%20Non-Regulatory%20Guidance Transportation%20Eligibility%20%28July%202024%29.pdf.

⁵ 34 C.F.R. § 300.34(c)(16).

beclaration of Raphael Park, May 15, 2024 ("May 15 Park Declaration"), ¶ 16.

⁷ May 15 Park Declaration, ¶ 11.

⁸ May 15 Park Declaration, ¶ 12.

Street, New York Avenue, and Southwest. On March 26, 2024, OSSE's services covered 551 routes, with OSSE directly operating 462 of them and contracting with private vendors for the remaining 89 routes. 10 The use of contractors was aimed to assist in reducing staffing requirements while improving route efficiency.¹¹

- 8. In my December 18 Declaration I described the daily information OSSE reported to the public on the timeliness of its student transportation services. Specifically, OSSE's "Daily DOT Updates" webpage hosts a bus route status table that reports three pieces of information: Route Number, Status, and Timestamp. 12
 - Route Number is a three-digit number that identifies a given bus route, where a route is a predetermined set of stops with students that need to be picked up and the location(s) where they should be dropped off.
 - Status is typically blank but occasionally lists one of two values when service is disrupted: "Late" or "Down." I have been informed by Counsel that these descriptions relate to the departure (or lack thereof) of the bus from the terminal; it bears no relation to when (if at all) the bus dropped students off at school.¹⁴

4

See Office of the State Superintendent of Education, OSSE In Your Language, https://osse.dc.gov/page/osse-your-language; Office of the State Superintendent of Education, Division of Student Transportation, https://doh.dc.gov/sites/default/files/dc/sites/osse/publication/attachments/OSSE-DOT%20Department%20Brochure.pdf.

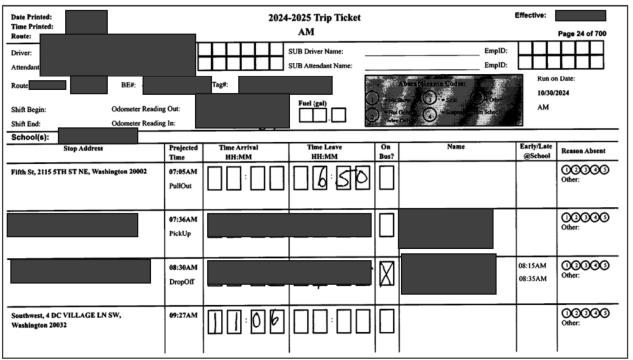
May 15 Park Declaration, ¶ 18.

¹¹ May 15 Park Declaration, ¶ 50.

¹² Office of the State Superintendent of Education, Daily DOT Updates, https://osse.dc.gov/page/daily-dotupdates.

The webpage defines "Late" as "Guaranteed coverage, but students will experience late school pick-up and/or late drop-off (up to 90 minutes)" and "Down" as "Due to staffing challenges, OSSE-DOT is attempting to assign the route to a driver once they complete another route. Students on the route will experience service delay." According to the webpage there is a third status value, "No Service," but I have not observed this status. Office of the State Superintendent of Education, Daily DOT Updates, https://osse.dc.gov/page/daily-dot-updates.

This is consistent with the declaration of Raphael Park, Deputy Superintendent of OSSE. See May 15 Park Declaration, ¶ 56. As of October 14, 2025, the Daily DOT Updates webpage also states that it "provides information on the status of the entire route and does not provide information about when the bus will arrive at a particular stop." Office of the State Superintendent of Education, Daily DOT Updates, https://osse.dc.gov/page/daily-dot-updates.


- Timestamp appears to provide the date and time that a route's status was updated on the webpage. Although the description at the top of the webpage refers only to "morning routes," status updates appear to be provided for afternoon routes as well. 15
- 9. OSSE has now produced multiple batches of Trip Tickets. 16 Based on conversations with Counsel, it is my understanding and observation that Trip Tickets are filled out each morning and afternoon for each bus route.¹⁷ Figure 1 below shows an example Trip Ticket (with identifying information redacted for the purpose of this declaration). As shown in Figure 1, Trip Tickets contain computer-printed information—such as route number, bus stop location, and projected arrival time—and information written by the respondent—such as actual arrival and departure times.

This is based on the observation that after noon, all designations added to the webpage have time stamps with a PM designation and presumably relate to disruptions to after-school bus routes.

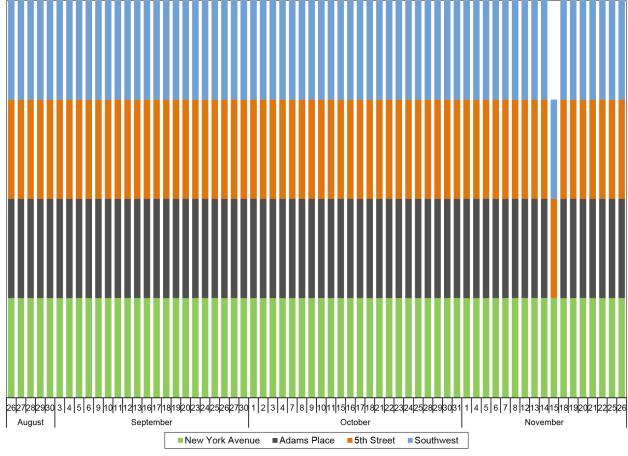
I received the first production of Trip Tickets on July 21, 2025, the second production on August 13, 2025, the third production on September 16, 2025, the fourth production on September 23, 2025, and the fifth production on September 26, 2025.

Based on my conversations with Counsel, it is also my understanding that some bus routes can be "split" (covered by multiple buses) or "doubled" (covered by a bus that also ran another route). These instances can often be identified through multiple tickets for the same route with different drivers, the same driver appearing on Trip Tickets for different routes, or notes written by the drivers.

Figure 1: Example Trip Ticket

Source: dc 24-cv-656-00068298, at -314.

10. As shown in Figure 1, Trip Tickets capture both the projected and actual times a bus departs from the terminal and arrives at each stop, including stops at schools. For school dropoffs in the morning there is also a "Early/Late @ School" column that reports a range of times that always bracket the projected drop-off time. In the example above the bus was projected to leave the Fifth St. bus terminal at 7:05 AM (it actually left at 6:50 AM), pick up a student at 7:36 AM, and drop the student off at school at 8:30 AM, in the "Early/Late @ School" window of 8:15 AM–8:35 AM. The Trip Tickets include standardized reasons the respondent can fill out that provide some additional clarity on why a student was absent. The respondent can also indicate why the bus was late, whether the bus drove a "doubled" route (when a bus covers two or more routes and therefore would appear on two distinct Trip Tickets), and whether the bus drove a "split" route (where a bus only covers a portion of a route, potentially resulting in multiple Trip Tickets for the same date-route-meridiem).¹⁸


Each bus that covered part of a split route would have its own Trip Ticket.

11. In total OSSE has produced over 660 PDF files, where each PDF typically contains all of the Trip Tickets for OSSE-managed buses for a given date-bus terminal-meridiem (AM or PM). 19 The approximately 330 PDFs containing September and October 2024 Trip Tickets for OSSE-managed buses amount to over 125,000 pages of Trip Tickets, although approximately 75,000 pages (or around 60% of the total) have been completely redacted (effectively a black box over the entire page). 20 As shown in Figure 2 below, the PDFs produced thus far appear to provide Trip Tickets for OSSE-managed bus routes for nearly every school day from the end of August, when the school year began, through November 2024. Each bar represents a 2024 school day through the end of November, and each segment of the bar signifies that Trip Tickets from the specified bus terminal have been produced.

Around 145 of the PDFs do not appear to contain Trip Tickets for OSSE-managed buses. The vast majority of these are PDFs that are fully redacted and contain less than 10 pages. The remainder either contain Trip Tickets for buses managed by private vendors or Trip Tickets for the 2023–24 school year.

I present statistics for September and October since my current analysis excludes November 2024 Trip Tickets. See footnote 21.

Figure 2: Days and terminals reported on in OSSE Trip Ticket productions to date, by terminal (AM only)

Source: Trip Ticket data.

12. OSSE has also produced almost 40,000 JPG (or image) files. A cursory review of these files suggests that each file is one page of a Trip Ticket, and that the JPGs relate to routes run by private vendors OSSE contracted with to assist in providing transportation services. These routes, with route numbers that have a "P" prefix followed by a number, differ from the routes reported in the PDFs in that they are (1) managed by a private vendor (as opposed to OSSE) and (2) depart from somewhere other than one of the four terminals OSSE-managed routes depart from. Additionally, these routes do not appear to be reported on by the Daily DOT Updates webpage.

Review

Trip Ticket and Daily DOT Update comparison

13. As I described in my December 18 Declaration and above, the Trip Tickets contain substantially more detail than the Daily DOT Update webpage and therefore provide a more accurate recording of OSSE's transportation services. The Daily DOT Updates webpage only lists whether a bus route was late to leave the terminal or down, and the protocols for what constitutes a "late" route are not publicly disclosed. By comparison, Trip Tickets provide insight into how OSSE designed the transportation system (e.g., when was a bus *supposed* to leave the terminal, when was a bus *supposed* to arrive at school, and at what point would it be "Late," etc.) and how the system actually performed (e.g., when did a bus *actually* leave the terminal, when did the bus *actually* arrive at school, etc.), among other things.

14. I conducted an analysis of the produced Trip Tickets, focusing on all unredacted PDF Trip Tickets for morning routes in the month of October 2024.²¹ I used Textract, a text extraction software, that "reads" each Trip Ticket page and transforms the information on each page into a Microsoft Excel tab. Text extraction software reliably captures the computer-printed information (e.g., projected drop-off time), dramatically reducing the effort needed to compile data, but is unable to reliably capture hand-written information (e.g., actual drop-off time). Thus, I used the Textract software to compile the printed information in the October 2024 Trip Tickets and then supplemented that process with a manual review of each Trip Ticket to record hand-written information used in the analysis described below.²²

Comparison of expected arrivals with school start times

_

I did not have a complete set of Trip Tickets for November 2024 sufficiently in advance of the preparation of this declaration but can supplement my analysis if requested. The same is true for the JPG Trip Tickets for routes operated by private vendors. I did not include PDF Trip Tickets for September as it is the first month of school and any success or shortcomings in transportation services may not be indicative of typical performance. I include Monday, September 30, 2024 in my analysis of October since the remainder of the week was in October.

For each Trip Ticket, I first confirmed that the computer-printed information extracted from the PDF was accurate. I then checked if the bus departure time from the terminal was at least 10 minutes later than the projected departure time and/or if the bus drop-off at school was at least 10 minutes after the projected drop-off time. If the bus departed the terminal 10 or more minutes late, I recorded how many minutes after the projected departure time it was. If the bus arrived at school 10 or more minutes late, I recorded how many minutes after the projected drop-off time the bus was, the total number of students that were dropped off, and what additional route the bus was covering if it was being "doubled."

15. Before considering the actual timeliness of OSSE's transportation services, it is worth noting that the Trip Tickets allow for an evaluation of how expected bus arrival times compared to when school instruction was scheduled to start. The District of Columbia Public Schools ("DCPS") website appears to list, for all public schools, both the time when the building is open to students and the time when classes begin.²³ Similarly, the DC School Report Card—a website maintained by OSSE—publishes instructional start time for private and charter schools located within the District of Columbia.²⁴ I compared the class start time to the projected bus drop-off times recorded by the Trip Tickets for all unredacted October 2024 OSSE-managed bus routes at the school drop-off level. Routes that drop-off students at multiple schools account for multiple drop-offs. That is, each scheduled stop at a school on a given route is a distinct drop-off for the purpose of my analysis.

16. As shown in Figure 3 below, 24 of the unredacted daily drop-offs observed in October, or 9% of the total unredacted drop-offs observed, had expected drop-off times after the start of the instructional time listed. Put another way, 24 drop-offs were designed such that, if the route was running as planned, students would still be dropped off after class began every day of the week. Among these drop-offs the typical expected drop-off was 15 minutes after the start of class.

²³ District of Columbia Public Schools, School Start and End Times, https://dcps.dc.gov/page/school-startand-end-times.

For example, the DC School Report Card website lists 8:30 AM as the instructional start time for St. Colleta Public Charter School. See, Government of the District of Columbia, St. Coletta Special Education PCS, https://schoolreportcard.dc.gov/lea/143/school/1047/report.

I also relied upon a website maintained by Maryland Association of Nonpublic Special Education Facilities and bell times posted by individual schools for students bused outside DC. MANSEF, https://mansef.org/

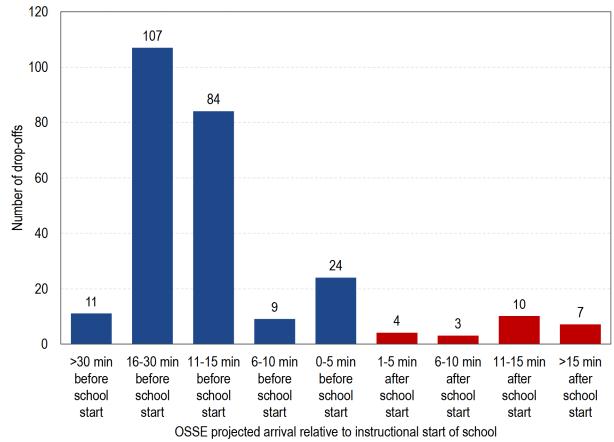


Figure 3: Distribution of drop-offs by time between projected drop-off and start of class

Sources: October 2024 AM Trip Ticket data, school bell times.

Note: This analysis is limited to AM routes observed in the unredacted October 2024 PDF Trip Tickets. Around 60% of all PDF Trip Ticket pages were redacted; assuming the unredacted routes are representative of the redacted routes, the actual number of routes demonstrating the observed behavior is somewhere between two and three times the observed results. The drop-off at The Aurora School at 601 Catoctin Circle NE, Leesburg VA, 20176 is excluded because class start time varies depending on which program a student is enrolled in.

Comparison of projected and actual terminal departure times

17. The Trip Tickets allow for an evaluation of how actual bus departures from the terminal in the morning compare to their projected departure time. This is relevant to consider as the Defendant has, in prior filings, pointed to the high rate of on-time terminal departures as an indicator of the transportation system's success.²⁵ In my review of the unredacted October 2024 PDF AM Trip Tickets I compared a bus's actual terminal departure time (as recorded by the Trip Ticket respondent) to the projected terminal departure time (computer-printed on the Trip Ticket) and recorded the difference between those times for all buses that left the terminal 10 or more

See, e.g., May 15 Park Declaration, ¶¶ 58, 59.

minutes after the projected departure time. I then combined this information with late and down bus statuses as reported by the Daily DOT Update webpage in October 2024.²⁶

18. Figure 4 below shows the number of mornings a bus left the terminal at least 10 minutes after the projected departure time broken out by the difference between the expected and actual departure times, with the color of the bar segments indicating whether the Daily DOT Update webpage reported a disruption for that route-day-morning. As shown in Figure 4, there were 513 departures where a bus left the terminal in the morning at least 10 minutes after the expected departure time and 24 of those departures, or 5%, were marked on the Daily DOT Update webpage as being disrupted, as indicated by the green segment at the top of the bar. There were 400 departures where a bus left the terminal at least 15 minutes after the expected departure time and 21 of those departures, or 5%, were marked on the Daily DOT Update webpage as being disrupted.

In my December 18 Declaration I described the systematic process used to download and compile a comprehensive daily dataset of bus statuses reported on the Daily DOT Updated webpage. See December 18 Wolfert Declaration, ¶ 9.

160 140 120 Number of AM bus departures 100 80 60 40 20 0 10-14 min 15-19 min 20-29 min 30-45 min >45 min Minutes late relative to projected terminal departure ■ Website not indicated late Website indicated late

Figure 4: Distribution of bus-mornings with actual departure at least 10 minutes after expected departure

Source: AM Trip Ticket data, OSSE website data.

Note: This analysis is limited to AM routes observed in the unredacted October 2024 PDF Trip Tickets. Around 60% of all PDF Trip Ticket pages were redacted; assuming the unredacted routes are representative of the redacted routes, the actual number of routes demonstrating the observed behavior is somewhere between two and three times the observed results.

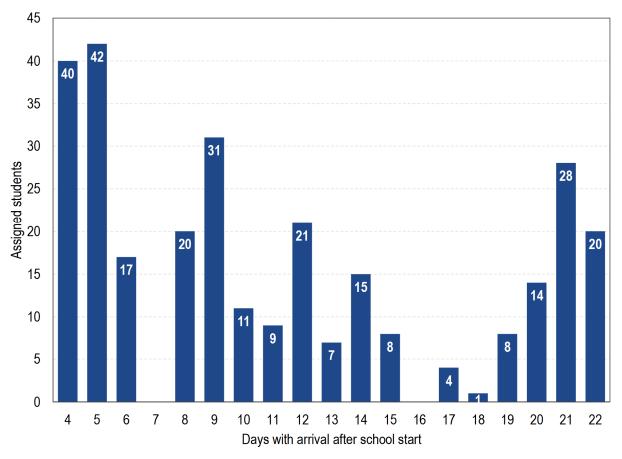
19. As shown in Figure 4, there were a significant number of bus routes that left the terminal at least ten or fifteen minutes after their expected departure but that did not have a recorded disruption on the Daily DOT Update webpage. The criteria for marking a bus route as late on the webpage are not publicly disclosed and the Defendant's prior filings did not offer an explanation as to whether they used the website or Trip Ticket data in calculating "on-time" terminal departures.²⁷ To the extent the Defendant's analysis relied on the publicly-reported data on the webpage, then they may have significantly overestimated the "on-time" statistic they report, based on my analysis of the unredacted October 2024 Trip Tickets.

I note that there were a small number of route-date-mornings for which the Daily DOT Update webpage reported a disruption but that, according to the Trip Ticket, left the terminal within ten minutes of the projected departure time.

Comparison of actual school drop-off with start of instruction

20. I have also compared, for all unredacted October 2024 PDF AM Trip Tickets, the actual school drop-off time with the time instruction was set to begin at that school. For the purpose of this comparison, I recorded whether a bus arrived after the beginning of instruction, how late after the start of instruction the bus arrived, and how many students were assigned to that route according to the Trip Ticket. I consider the total number of students listed on the Trip Ticket as opposed to the number that actually boarded the bus as the former represents the total number of students that could have been impacted by transportation disruptions. Further, some students may not have boarded the bus because of early or late pick-ups or arrivals, making the number of actual students aboard a less reliable metric for evaluating the performance of OSSE's transportation system.

21. Figure 5 below shows the number of students that were assigned to bus routes that arrived at school after the start of instruction at least four days in October. Note that, according to the DCPS calendar, October had, at most, 21 days of school.²⁸ Thus, all of the students observed in Figure 5, 296 in total, would have arrived late to school approximately once a week or more, on average, if they rode the bus to school. Further, 197 of these students were assigned to bus routes that arrived at school after the start of instruction at least eight days in October, meaning they would have arrived late to school approximately twice a week or more, on average, assuming they rode the bus to school. It is important to remember that these results are based on the unredacted October 2024 PDF AM Trip Tickets and that around 60% of all PDF Trip Ticket pages were redacted. If the unredacted routes are representative, or statistically similar to, the redacted routes then the total number of students arriving late at least once a week would be somewhere between 592 and 888, and the number of students arriving late at least twice a week


District of Columbia Public Schools, School Year 2024-25, https://dcps.dc.gov/sites/default/files/dc/sites/dcps/publication/attachments/SY%2024-25%20Calendar English Updated 022625.pdf.

October 2024 has 20 school days but I also include Monday, September 30th in the analysis, bringing the total to 21. Some non-DCPS schools had 22 days of school between September 30th and October 31st, 2024. See, Two River Public Charter School, 2024-25 School Year Calendar, https://www.tworiverspcs.org/wpcontent/uploads/2024/05/Copy-of-SY-24-25-School-Calendar.pdf.

would be somewhere between 394 and 591. These results may still be conservative since they do not account for any students that are late to school on routes operated by private contractors.

Figure 5: Assigned students late for school at least four days in October 2024

Case 1:24-cv-00656-PLF

Source: AM Trip Ticket data, school bell times.

Note: This analysis is limited to AM routes observed at least 15 times in the unredacted October 2024 PDF Trip Tickets. Around 60% of all PDF Trip Ticket pages were redacted; assuming the unredacted routes are representative of the redacted routes, the actual number of routes demonstrating the observed behavior is somewhere between two and three times the observed results.

Relationship between terminal departure and school arrival

22. Finally, it is worth considering the relationship between a bus's departure from the terminal and school drop-offs. As mentioned, Defendant has previously pointed to on-time terminal departures as an indicator of the transportation system's success.²⁹ And as I stated earlier, these metrics may be misleading if they are based on the Daily DOT Updates webpage, which appears to underreport the number of late terminal departures. Holding this issue aside,

29 See 1

See May 15 Park Declaration, ¶¶ 58, 59.

Case 1:24-cv-00656-PLF

using terminal departures as a success metric is only relevant if there is a strong relationship between terminal departure and school arrival. That is, if a bus leaving the terminal late is a poor predictor of whether it arrives at a school late, then terminal departure is a less relevant metric for evaluating OSSE's transportation system.

23. There does not seem to be a strong relationship between a bus leaving the terminal late and arriving at school late. I reached this conclusion by calculating the correlation between a bus leaving the terminal ten or more minutes after the expected time and the same bus arriving at its drop-off after the instructional start of school. In statistics, correlation is the linear measure of the relationship between two variables, meant to capture the extent to which they change together. A correlation statistic can range from -1 to 1, where results closer to -1 or 1 represent stronger correlation, and a negative result suggests an inverse relationship between the variables (i.e., a negative correlation) while a positive result suggests a direct relationship between the variables (i.e., a positive correlation). In my analysis I estimated the correlation between (1) whether a bus is late to leave the terminal and (2) whether it is late to arrive at school. A correlation close to 1 would be consistent with terminal departures as a relevant metric, since it would suggest late terminal departures are strongly correlated to late school arrivals and therefore on-time terminal departures are strongly correlated with on-time school arrivals. I calculated a correlation statistic of around .07, which is a weak, positive correlation.

24. This is consistent with the results seen in Figure 6 below, comparing terminal departures with school arrivals relative to instructional start time. Specifically, for buses that left the terminal within 10 minutes of their scheduled departure time, 12% percent arrived at school late. For buses that left the terminal 10–15 or more than 15 minutes late, 18% and 19% of buses arrived at school after the start of instruction, respectively. Thus, while there is an increase in the frequency of late school arrivals when focusing on buses that left the terminal late, it is far from a guarantee that a late terminal departure results in a late school arrival or that an on-time

Morris H. DeGroot and Mark J. Schervish. *Probability and Statistics* (Addison-Wesley 4th ed. 2012).

terminal departure results in an on-time school arrival, consistent with the weak positive correlation statistic.

Figure 6: Terminal departures relative to school arrivals in October 2024

Terminal departure	Arrival relative to instructional school start		Percentage after start of
	On-time	Arrives after start	instruction
Within 10 minutes of scheduled	3,804	508	12%
10-15 minutes after scheduled	229	51	18%
>15 minutes after scheduled	523	122	19%

Source: AM Trip Ticket data, school bell times.

Note: This analysis is limited to AM routes observed in the unredacted October 2024 PDF Trip Tickets. Around 60% of all PDF Trip Ticket pages were redacted; assuming the unredacted routes are representative of the redacted routes, the actual number of routes demonstrating the observed behavior is somewhere between two and three times the observed results.

I declare under penalty of perjury under the laws of the United States of America that the foregoing is true and correct.

Executed on October 15, 2025 in Washington, DC.

By:

Benjamin Wolfert, MBA

Appendix 1: Curriculum Vitae

Summary of experience

Benjamin Wolfert specializes in data analysis and management, discovery support, and industry analysis. He has experience working with counsel, supporting testifying experts, and leading teams through all stages of litigation. His work focuses on healthcare engagements in the pharmaceutical industry, which often requires the analysis of large, complex sets of data. He also has experience in antitrust litigation in the airline, technology, and credit card industries. He has supported experts and counsel in matters involving the False Claims Act (FCA), monopolization, collusion, class certification, and price fraud.

Areas of expertise

- Data analysis
- Database development and management
- Damages estimation and rebuttal support
- Discovery support
- Pharmaceutical pricing and distribution
- Market Power

Education

- MBA, Robert H. Smith School of Business, University of Maryland
- BS, Economics (with honors), Pennsylvania State University
- BS, Mathematics, Pennsylvania State University

Selected experience

- Served as lead consulting expert in Regeneron Pharmaceuticals, Inc. v. Amgen Inc., a matter regarding alleged foreclosure from the PCSK9 inhibitor market through anticompetitive bundling of PBM rebates for products in different therapeutic areas that led to below-cost-pricing and raising rival's costs. Supported expert testimony and depositions of Dr. Eric Gaier regarding alleged foreclosure, competitive effects, and rebuttal of Plaintiff expert's damages model. Provided support to counsel in production of extensive discovery materials.
- Served as lead consulting expert in *AmerisourceBergen Drug Corporation, et al.*, v. ACE American Insurance Co., et al., a matter related to insurance coverage payments related to a wholesaler's settlement in underlying opioid litigation. Oversaw research into distributor obligations to abate opioid diversion, evaluation of Amerisource's diversion abatement systems, implementation of said

systems, and analysis of indicia of diversion. Supported submission of reports by and depositions of Dr. Fred Selck and Dr. Charlie Mullin.

- Served as lead consulting expert in *United States of America, ex rel. Michael Bawduniak v. Biogen IDEC Inc.*, a matter where the manufacturer allegedly violated the FCA through kickbacks in the form of honoraria, meals, and other event-related remuneration to physicians. Oversaw numerous areas of inquiry with regard to event participation, expenditures, and estimated exposure while supporting counsel through the discovery process, including fact depositions, production of discovery materials, and responding to inquiries from opposing party. Supported submission of report by and deposition of Dr. Eric Gaier.
- Served as lead consulting expert in *Government Employees Health Association (GEHA) v. Actelion Pharmaceuticals LTD.*, regarding market definition and market power on behalf of Actelion in connection with GEHA's antirust allegations regarding alleged improper use of Tracleer®'s REMS program to delay entry of generic bosentan formulations. Supported submission of report by and deposition of Dr. Eric Gaier.
- Served as lead consulting expert in *United HealthCare Services, Inc. v. Gilead Sciences and Teva Pharmaceuticals USA, Inc.*, a matter where the manufacturers allegedly engaged in "pay-for-delay" conduct to delay generic competition for multiple products used to treat and prevent HIV. Oversaw estimation of damages and multiple report submissions by Dr. Ernst Berndt. Prepared Dr. Berndt and Dr. Leemore Dafny for trial testimony and assisted legal team during trial in San Francisco.
- Served as lead consulting expert and supported expert testimony of Dr. Ernst Berndt and Dr. Eric Emch in State of Wisconsin et al. v. Indivior Inc. et al, evaluating damages, merits, and antitrust issues related to pharmaceutical product hopping on behalf of plaintiffs.
- Supported expert testimony of Dr. Eric M. Gaier in *In re Delta/AirTran Baggage Fee Antitrust Litigation* in connection with an alleged conspiracy to reduce capacity in Atlanta and introduce a first-bag fee. Managed and analyzed publicly available and private data sets in support of an econometric model designed to determine common impact and price effects, and evaluated damages models of the plaintiffs' expert.